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1. INTRODUCTION

This note was written as a supporting material for a talk for a seminar at EPFL in autumn 2025,
studying [Bu-+25].

In the first part we introduce elements of oco-categories, trying to motivate the latter for appli-
cations in algebraic geometry.

In the main part of the note, we introduce derived algebras and the cotangent complex. A notable
part of the exposition is the calculation of the cotangent complex of a derived zero locus of a section
of a vector bundle in Example 3.29.

As we will explain in Conventions, we focus our attention on what happens over C. But this
note is written in a way that most of the propositions (everything except Proposition 3.4) hold over
an arbitrary base.

At the end, we make use of the language of co-categories to define derived algebraic stacks, a
derived enhancement of usual (higher) stacks.

Conventions. Everything happens over C. Namely in what follows a vector space is a C-vector
space, an algebra is a C-algebra, any (affine) scheme is over C, etc. We will denote by Alg the
category of C-algebras, Aff the category of C-affine schemes, Sch the category of C-schemes.

By chain complex, we mean a N-homologically graded chain complex of C-vector spaces. Some
would use term connective complex of C-vector spaces. We use homological notation for complexes
(differentials go down!). Homology groups of a chain complex will be denoted by the topologi-
cal notation 7;(= H;) as homotopy groups. We also use the topological convention to call fiber
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Sequences
A—B—C

in a stable oo-category whenever we have a pullback(=pushout) diagram

A—— B

|

0—— C

Whenever we have such a fiber sequence, there is an associated long exact sequence of homotopy
1
groups.

2. 00-CATEGORIES

The language of oo-categories is an enlargement of the language of categories where the ho-
motopical mechanism is built in. For example, if one considers complexes of abelian groups, or
complexes of coherent sheaves on a scheme, then there is a notion of homotopy between maps,
and one sees that the right notion of “being the same” for complexes is when two complexes are
“quasi-isomorphic” a notion which ultimately relies on the homotopical logic present in complexes.
One can then consider morphisms of complexes only up to quasi-isomorphisms, meaning precisely
that one can invert all quasi-isomorphisms to form a new category. But this process is too crude
in some aspects.

e For example, one learns that the even though the cone Cone(y) of a morphism of complexes
p: Ae = B

should be thought of as a “quotient”, it does not possess the universal property of the
quotient in this new category where we inverted quasi-isomorphisms. Namely it is not same
to give a map Cone(yp) — K, in this category and a map B, — K, which is zero when
precomposing by .

However, one sees by the very construction of the cone in homological algebra that,
giving a map of complexes B, — Cone(y) is exactly the same as the data of a map of
complexes ©: By — Ko together with a homotopy between ¢ and the zero map. Here
we see that a correction to the universality of the cone would be to “remember the data
of an homotopy”. What we learn here is the following principle of higher categories: it is
unreasonable to “only” ask that two things are homotopic. Instead one should ask that
they are homotopic and we remember an homotopy witnessing their identification.

e Say X is a scheme covered by affine schemes U;. Then the data of a quasi-coherent sheaf
on X is the same as the data of collection of Ox(U;)-modules together with compatible
(i.e. respecting the cocycle conditions) identifications on the intersections. Say we want to
mimic this so-called descent process but for complexes of quasi-coherent sheaves in lieu and
place of quasi-coherent sheaves.

IThese are the oo-categorical version of “distinguished triangles” in triangulated categories.
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What would be appropriate would be to apply the aforementioned “higher philosophy”:
let’s take a collection of complexes of modules on affines, and quasi-isomorphisms on inter-
sections satisfying the cocycle conditions. So here, instead of asking only that ¢;;0r = @ik,
we should remember an homotopy witnessing that these two maps are “equal” in the derived
category. But then we have homotopies h;j;, that become part of the data and one would
want again that they are compatible in some appropriate sense when going to quadruple
intersections. And again, this should be understood as the extra data of an homotopy (of
homotopies) which witness this higher compatibility. This process can potentially go on,
and on, and on...

Even though this seems very complicated, this is the correct thing to do if one wants to
have descent for complexes.

e From the above, we see that what would be needed is some categorical language where mor-
phisms in a category are not only sets, but are “homotopy types”. Namely a mathematical
entity where it makes sense to have points, morphisms between points, morphisms between
morphisms, and so on, in order to be able to remember all this extra data. Simplicial sets
are a combinatorial tool that do the perfect job for that.

We claim that the language of simplicial sets is adequate to achieve the above. If so, ordinary
category theory should be a special case. So we first explain how to understand a category as a
simplicial set. Namely, given a simplicial set (X,,), one should think of X{ as the set of objects, X;
as the set of morphisms, X5 as the set of homotopies between morphisms, etc.

References and proofs for Propositions and definitions below are found in [Ker, Tag 002L].

Proposition 2.1. Let C be a small category. Then N(C) the simplicial set defined by
N(C),, = Fun(A,,C)

which is the set of tuples of n-composable morphisms gives a fully-faithful embedding Cat — sSet.
One can characterize the image of this embedding as those simplicial sets S such that for every
pair of integers 0 < i < mn and og: A} — S, then there is a unique extension o: A™ — S.

The condition in the characterization essentially tells that there is a unique associative way to
compose morphisms. The simplicial set A} is the sub-simplcial set of the boundary of A™ where
we removed the face opposite to the vertex i. For example, we have

1 1 1
0 —— 2 (| J— > 2 0— 2

and so we see that the condition for n = 2 amounts that for any pair of composable morphisms,
there is a unique composition. Note that asking that one would have extension for outer horns,
so when ¢ = 0 and ¢ = n would mean that every morphisms has a unique inverse — for example
the unique extension property for A2 would be given f and g, that there is a unique h such that
hf = g. One can therefore also characterize groupoids as simplicial sets.


https://kerodon.net/tag/002L
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Proposition 2.2. Those simplicial sets S such that for every pair of integers 0 < i < n and
oo: A} — S, then there is a unique extension o: A™ — S, form a category which is equivalent to
the category of groupoids.

Simplicial sets are also known to model homotopy types. The incarnation of homotopy types
would be as the fundamental co-groupoid of a space, namely something with points, paths (=mor-
phisms) between points, homotopies between paths (=morphisms between morphisms), etc. This
fits in the above framework.

Definition 2.3 (oco-groupoid). A simplicial set S such that for every pair of integers 0 < i < n
and 0g: A7 — 8, then there is an extension o: A™ — §, is called an co-groupoid or an homotopy
type or a Kan complex or a space, or an anima.

Here, instead of asking that there is a unique composition of two composable morphisms (f, g)
we are asking that there is one composition h, and the data of the extension o: A? — S is to be
interpreted as the data of an homotopy witnessing that f o g ~ h. Also, in this case we mimicked
the groupoid condition so that every morphism, and higher morphism was asked to be invertible.
One can instead mimic the condition for categories and get the following.

Definition 2.4 (co-categories). A simplicial set S such that for every pair of integers 0 < i < n
and op: A} — S, then there is an extension o: A" — S, is called an co-category. Given two oo-
categories C and D, then we denote the simplicial set of morphisms between C and D by Fun(C, D).
This simplicial set is again an oo-category, that we call the co-category of functors between C and
D. Given ¢, € C, then the simplicial set

Mape(c, ) = {c} Xpun({o},¢) Fun(A', C) Xpun(q1y.0) {¢'}
is an oo-groupoid, and is called the mapping anima of between ¢ and ¢'.

Example 2.5. One may think of a co-category as a category enriched over co-groupoids due to the
homotopy coherent nerve construction [Ker, Tag 00LH|. Therefore we present two oco-categories as
categories enriched over co-groupoids in what follows.

(1) The oco-category Ani of co-groupoids. This category plays the role that the category of sets
plays in ordinary category theory. Because the simplicial set of morphisms between two
oo-groupoids is again an co-groupoid, co-groupoids form an co-category that we denote by
Ani.

(2) The oo-category dMod 4 of derived A-modules. Let A € Alg be an algebra. Consider
Chy, >0 the category of chain complexes of A-modules. From topology, and the homology
construction, we know how to associate a chain complex to a simplicial vector space. This
construction actually goes also the other way.

Proposition 2.6 (Dold-Kan, [Ker, Tag 00QQ)]). There is an equivalence of categories called
the Dold-Kan correspondence

DK: ChAQO — SMOdA

between chain complexes and simplicial A-modules.


https://kerodon.net/tag/00LH
https://kerodon.net/tag/00QQ
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Therefore we can enrich the category of chain complexes in co-groupoids by defining the
mapping homotopy type between two chain complexes A and B by

MapsVec (DK(A)a DK(B) ) :
This forms an oo-category that we denote by dVec.

Remark 2.7. Let us precise a bit the nature of example (2). Usually one considers chain complexes
of A-modules and wants to invert quasi-isomorphisms. Actually, one can get to the oo-category
mentioned in (2) using the same idea. Namely, instead of inverting morphisms in the usual “1-
categorical sense” one can invert morphisms in the oo-categorical sense ([Ker, Tag 01M4]) to get
an equivalent result to the one explained above. The fact the two constructions agree essentially
boils down to the key fact that DK sends quasi-isomorphisms to homotopy equivalences.

A key feature of co-category theory is that every construction that one may think possible in
ordinary category theory has an analogue in oco-category theory. For example, (co)limits, adjoints,
sheaves, etc. For sheaves one important feature is that this language allows to access cohomology
more directly than the usual constructions.

In ordinary category, limits and colimits are ultimately determined by limits and colimits of sets
using Yoneda’s lemma. In the next example we explain what is the pullback in the category of
oo-groupoids.

Example 2.8 ([Ker, Tag 010B]). Let

Y
ig
x 1.z

be a diagram of co-groupoids. The pullback of this diagram in Ani is given by the simplicial set
X X Xpun({0},2) Fun(AY, Z) Xpun((1y,2) Y

To get a grasp on this, note that an object of this co-groupoid is a triple consisting of
(1) An object of z € X,
(2) an object of y € Y,
(3) an isomorphism between f(x) and g(y) in Z.
As for a morphism between such triples, it is the data of
(1) a morphism z — 2/ in X
(2) a morphism y — ¢’ in Y,
(3) the data of a “commuting square”


https://kerodon.net/tag/01M4
https://kerodon.net/tag/010B
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meaning the data of two vertical morphisms as depicted, one diagonal morphism f(z) —
g(y"), and two homotopies witnessing that the composition on the sides of the square are
homotopic with the diagonal morphism.

3. DERIVED ALGEBRAS AND DERIVED STACKS

In this section, the goal is to explain the notion of a derived algebraic stack. In order to do this,
we will add the “derived adjective” progressively to objects of increasing complexity.

3.1. Automorphisms and tangent vectors. The first step is to look at so called “derived al-
gebras”. This will form an oo-category that we denote by dAlg. Derived algebras bear the same
relation to algebras as chain complexes of vector spaces bear to vector spaces. They are a gener-
alization of algebras where there is no “underlying vector space”. Instead, there is an underlying
chain complex of vector spaces.

As the opposite of the category of algebras correspond to affine schemes, the opposite of the oco-
category of derived algebras will correspond to the oo-category of “derived affine schemes”. Let’s
do a thought experiment. Consider

to: Spec(C) — Spec(C[t])
the inclusion of the origin in the affine line. Say we are computing the pullback

F ——— Spec(C)

l !

Spec(C) —— Spec(CJt])

but not in the category of schemes, but in the (for now putative and to explain) oco-category of
derived schemes. Note that in the category of schemes, this pullback is the origin itself: it is the
self-intersection of the origin with the origin... but the derived intersection will differ! Derived
schemes can ultimately be seen as a combinatorial way to record redundancy in algebraic equations
[Lur04, Section 1.1.1], and here derived pullback will remember that we are intersecting the origin
with itself by “adding” a self-automorphism.

As explained above, an homotopy pullback should not only record the data of maps that com-
mute, but maps that commute up to homotopy and the data of an homotopy witnessing it. In this
example, there should be only one choice of maps: namely, the constant map to the point. So here
the pullback should be one “point”, with some extra data of automorphisms of the composite map
F — Spec(CJ[t]).

To compute the above fiber product is equivalent to computing the pushout of algebras

C[t] —— C
|
C——P

but in the oco-category of derived algebras. Because, as mentioned above, derived algebras bear the
same relation to algebras as chains complexes to vector spaces, we might as well use the derived
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tensor product of dVec because the ordinary pushout would be computed with the ordinary tensor
product. So,

t 0
C ®ky € = Cl1]/(t) ®cyy (C[t] LA C[t]) -c3c.
We denote this chain complex by
Ce C[1].
We may even look at a “ring structure” on this complex which is given by
(a1, a2) - (B, B2) = (a1B1, a1B2 + Braz).

Now we should have a groupoid of morphisms
dAlg(C[t],C & CI[1])
with one point, corresponding to evg: f(¢t) — f(0) landing in degree zero, and this map should
have automorphisms which correspond to self homotopies of this map. Considering ring maps
Clt] - Ce Cl1]

of the form f(t) — (f(0),d(f)) with respect to the ring structure explained above, bearing in mind
that the data of d which lands in degree 1 is the data of an automorphism of the evaluation map
we get a natural identification

Aut(evg) = Derc(CJ[t],C) = (TAé,(C>O

the fiber of the tangent space of Al at the origin.
What do we get from this discussion: the natural notion of automorphisms of a morphism of alge-
bras that we deduce from homological algebra indicates it is the same as a tangent vector/derivation.
We state the following as a generalization of the above discussion.

Proposition 3.1. Let A € dAlg a I-truncated algebra, meaning that 7, (A) =0 if n > 1. Let R be

a discrete algebra. Let ¢: Spec(A) — Spec(R), meaning a morphism R — A in dAlg. Then
Aut(p) = Derc(R,m1(A)) = HomR(Q}ﬂC, m1(A)) = Tgic ®r m1(A).

where the last equality is either taken as a definition or holds as a property in the case when A is

smooth.

3.2. Commutative differential graded algebras. In this section, we explain more concretely
what is the co-category dAlg. Namely, as dVec is more concretely chain complexes, there is also
such a description as complexes for derived algebras.

Definition 3.2 (Commutative differential graded algebras). A commutative differential graded
algebras or in short, cdga is a chain complex of vector spaces (Cs, d) such that

SV
n>0

is a graded ring which satisfies the following “commutativity axiom”

ab = (—1)llpg
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and a graded Leibniz rule

d(ab) = d(a) - b+ (—1)%a - d(b).

Remark 3.3. Given any cdga C, we have that mo(C) = Hy(C) inherits the structure of an algebra
and m;(C) = H;(C) for i € N has a natural structure of m(C)-module.

We briefly explain why cdga’s form an oo-category using the following proposition.

Proposition 3.4. The Dold-Kan correspondence (Proposition 2.6) refines to an equivalence of
categories
DK: cdga — sAlg

The mapping homotopy type between two cdgas A and B can be therefore defined as the simplicial
set

Mapgas (DK(A), DK(B)).

One can also obtain the oo-category above by inverting co-categorically the 1-category of cdga’s at
quasi-isomorphism of cdgas.

Remark 3.5 (Subtle points away from characteristics zero). Here being in characteristic zero is
crucially important for the above. Over Z or F, for a prime number p, the above does not hold.
One has to work directly with simplicial algebras for derived geometry and cdga’s are not anymore
well-behaved.

If A € dAlg we denote by dAlg, the co-category of A-algebras. This is the co-category of maps
A — B where B € dAlg.

As in homological algebra, it is important to distinguished a class of objects which behaves better
with respect to “derived functors” and homotopies.

Definition 3.6. Let A € Alg be a discrete algebra. A quasi-free A-cdga is cdga such that the
underlying graded ring is of the form
A\ M

where A denotes the alternating algebra=(free graded commuative algebra) and M is finite pro-
jective A-module.

Let B € dAlg,. We say that B’ — B is quasi-free replacement if B’ is quasi-free and the map is
quasi-isomorphism.

Proposition 3.7. Let A € Alg be a discrete algebra and B,C € dAlg,. Let B' — B be a quasi
free-replacement. Then

BehC=B®,C
where on the right hand side, the tensor product is the usual tensor product of cdgas, i.e the under-

lying tensor product of chain complexes equipped with the canonical structure of cdga in the tensor
product.

As there is a notion of modules over an algebra, there is a notion of derived modules over a
derived algebra A € dAlg.
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Definition 3.8 (Differential graded module). Let A = (Al,d4) be a cdga. A differential graded
A-module is a Z-chain complex M = (M,,dps) such that

D,

ne”L

is a graded module over the graded ring (D,,cx An), and that for every homogeneous element a € A
and m € M we have the following compatibility with the differential

dyr(am) = da(a)ym + (=Dady (m).

Differential graded A-modules also form an co-category, that we denote by D(A).
In the case when m;(M) = 0 for i < 0, we say that M is connective. We will denote the
oo-category of connective A-modules by dMod 4.

Remark 3.9 (Stable derived categories D(A)). There is also a way to incorporate unbounded
chain complexes, where as only connective ones are in dMod 4, to get a so called stable co-category,
which may be thought as the co-categorical version of triangulated categories. We will denote this
category by D(A). Objects here are Z-chain complexes that are dg- A-modules, and the co-category
associated is the one coming from usual homotopical algebra one these objects.

Notably, because we can represent any element of D(A) as a chain complex, we can define a
t-structure [HA, Section 1.2.1] on this category by

D(A)s0 = {M € D(A) | 7,(M) =0 i <0}

D(A)<o = {M € D(A) | m(M) =0 i >0}
We have D(A)>q = dMod 4 and D(A)" is the category of discrete mo(A)-modules.
The notion of perfect complex is easily characterized in this language.

Definition 3.10 (Perfect complexes, [Lur04, Section 2.4]). An object of D(A) is finitely presented
it if can be obtained in finitely many steps from A direct sums and pushouts (=pullbacks=exact
triangles). An object is called perfect if it is a retract of a finitely presented object. A perfect
object is a compact object in the sense of [HTT, Section 5.3.4].

Remark 3.11. If A is discrete, then an object of D(A) is perfect if and only it is isomorphic to a
bounded complex of finite projective modules.

3.3. Cotangent complex. In this section, we will define an object which bears a crucial place
in the theory and applications, the cotangent complex. This object was originally introduced in
lusie’s thesis [11172].

The cotangent complex has a great importance in the theory of derived algebras. Namely, it
can be made precise that to compute a mapping space in derived algebras amounts to specifying
an algebra map on my and compatible higher derivations in an inductive process [HA, Remark
7.4.1.29], and the latter is entirely controlled by the cotangent complex.

In order to introduce this object, we will first introduce derived analogues of dual numbers.
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Example 3.12. Let A — B be a cdga. Let M € dModp be a connective dg-module over B.
Then we consider the square zero extension of B by M
Bae M e dAlgg

which as a complex is defined as the direct sum of complexes and the algebra structure is defined
on homogeneous elements as B acting on itself and on M the obvious way.

For example if A= B = M = C we get the dual numbers C @ C = C[t]/(t?).

If A, B and M are discrete, recall that A-linear sections of the projection B & M — B are in
one to one correspondence to A-linear derivations B — M. This is expressed as the pullback

Der 4 (B, M) —— Homa,, (B, B® M)

| |

¥ ——9 5 Homay, (B, B)

Namely a section of the projection is of the form b — (b,d(b)) for some map d, and the fact that
this has to be a ring morphism precisely spits out the derivations axioms.
We can now define derivations in the context of derived algebras.

Definition 3.13 (Higher derivations). Let A — B be a cdga morphism. Let M be a dg-module
over B. The homotopy type of A-linear derivations from B to M is the pullback

dDer4(B, M) —— Mapgp,, (B, B ® M)

| !

id
* 1—> MapdAlgB (B,B)

Like in the discrete case, we have the following.

Proposition 3.14 (Cotangent complex). Let A — B be a cdga morphism. Then there is a complex
in dModp unique up to unique isomorphism in the sense that it satisfies the following universal

property,
Mapgiod, (Lpja; M) = dDera(B, M).

For every morphisms A — B — C in dAlg we have a fiber sequence in D(C)
Lpa®pC — Loja — Legs
If A is a discrete algebra then we have
mo(Lpja) = Qry(B))A-
Moreover if A € Alg is discrete and B € Alg, is a smooth A-algebra, then
Lpja = Qp)al0].

The cotangent complex is subject to the following base change formulas, that one checks using
the universal property from Proposition 3.14.
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Proposition 3.15. Let R € dAlg. Suppose that we have a pushout diagram in dAlgp of the
following form.
—

Qé—n»

S+—w

(1) There is a natural isomorphism
D ®c LC|A — LD\B-
(2) We have a pushout diagram

D®aLyp —— D®p Lpgr

! !

D®c Lojrg — Lpir

Equivalently, we have a fiber sequence
D®aLag— D®pLpr®D ®c Loigr — Lpir
Remark 3.16. About the last point of Proposition 3.15 — whenever there is a pushout diagram
ot

gl q

Zz —
f/

in a stable co-category, then we have a fiber sequence

i

~

Example 3.17. Let R be discrete R-algebra and let P be a projective R-module. Consider the
natural surjection

Sp :=Symp(PY) — R
which corresponds geometrically to the zero section of the vector bundle V(P) over X = Spec(R).
Let’s compute Lpg|g,. Note that the composite R — Sp — R is the identity. Therefore using the
fiber sequence of cotangent complexes we get that

Lspr ®sp R — Lgr = Lprjsp
so we get that
Lpisp = Lspir ®sp R[1].
But as R — Sp is smooth, and that QEP\R = Sp ®@r PV we get in the end that
Lgys, = P'[1].
Definition 3.18 (Properties of morphisms). Let A — B be a morphism in dAlg such that mo(A) —
mo(B) is finite type. We then say that
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1s smooth over A 1 L4 1s of tor-amplitude |0, 0] 1n ,
1) Bi h Aif Ly is of litude [0,0] in D(B
(2) B is étale over A if L4 = 0.

The following is important for applications of the theory.

Proposition 3.19 (Perfect obstruction theory). Let A € dAlg be a derived algebra which can be
written as a finite colimit of algebras of the form Clx| (a finitely presented derived algebra). Then
L pc is perfect and the natural map

m0(A) ®a Lajc = Lrycayc

s an isomorphism at my and a surjection at 7.

Proof. The fact that L 4c is perfect follows from the fact that the cotangent complex construction
L_c sends finitely presented algebras to finitely presented modules. Also, it is a general fact that
L)) is 2-connective (vanishing o and 71).? Now the last claim follows using the fiber sequence

for C - A — my(A) O

3.4. Derived loci and derived critical loci. In this section, we compute key examples of derived
schemes. Namely we expand on the example of Section 3.1. So it is better to first give the following
definition.

Definition 3.20 (Derived affine schemes). The oco-category of derived affine schemes is defined as
the opposite of the oco-category of derived algebras dAlg®®. We denote it by dAff.

Definition 3.21. Let X = Spec(A) € dAff. We call the truncation of X the affine scheme
Spec(m(A)) and we denote it by X¢. There is a canonical map

Xcl — X.

Remark 3.22. General derived schemes will be defined in the next section when introducing
sheaves. The notion of pullback of derived affine schemes is the same as the notion of pullback of
derived schemes, because derived affine schemes and derived schemes belong in a similar adjunction
that affine schemes and schemes do.

First, let R be a discrete algebra and let f € R be any element, and denote X = Spec(R). Say,
in ordinary scheme theory, that one wants to compute the locus {f = 0} of X. A way to do this is
to look at the pullback in schemes

V(f) — X

b

which is just Spec(R/(f)). Now that we have access to the co-category of derived schemes, one
might as well ask what is the intersection in this new category.

We first note that a quasi-free resolution of R seen as an R[t]-algebra with the evaluation at zero
is given by

2This is because the cofiber of A — mo(A) is 2-connective and by [HA, Corollary 7.4.3.2.].
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(R[] % R[t])) — R.

Therefore using Proposition 3.7, one sees that the algebra of the derived intersection is given by

R/X(f)=RLR
Let’s list some cases.
(1) If f is a non-zero divisor, then this cdga is quasi-isomorphic to R/(f), which equals in any
case mo(R/*(f)).
(2) Otherwise we have some non-trivial 71, namely

m(R/M(f)){g € R| gf = 0} = Torg(R, R/(f)).

(3) As examples, we can take f = 0 and get a straightforward generalization of the self inter-
section from Section 3.1.
(4) Say R = Cl[z,y]/(xy?). Then for the derived loci of y = 0 we will have

m(R/M () = (zy)/(xy?).

We generalize the above to the zero locus of a section of a vector bundle. So let P be a vector
bundle of finite rank (=finite projective module) on an algebra R. And fix s € P an element.
Denote by Sp = Symp(PV).

We define a cdga structure on the complex of Sp-modules

Sp@r \ P

Namely, say that
e:ZozZ'@xi EP'®P
i
is the canonical element. Then we define a differential by

n+1
Sp ®gr /\ rY— SP®R/\P\/

dla®B1 A+ Bng1) Hzaaﬂ@Z YBR(x)BL A Be A+ A Bt

We denote this cdga by Kos(P) and call it the Koszul complex of P.
We have the following proposition.
Proposition 3.23. The natural Sp-cdga map
Kos(P) —» R
is quasi-free resolution of R seen as an Sp-algebra sending PV in degree 1 to zero.

Therefore, we arrive at the following definition.
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Definition 3.24 (Derived loci). Let R be a discrete algebra, P a finite projective R-module and
s € P. Then we call the derived zero locus of s the pullback in the co-category of derived schemes

Va(s) — X
.
X —5— V(P)
By the above, the algebra of functions is given by
Kos(P) ®s, R

where here R is seen as an R-algebra by evy: Sp — R which is given by evaluation at s.
We denote this cdga by Kos(P,s). This is the complex A PV with differential

n+1 n

dy: /\PV—>/\PV

BiA-ABnpr> > (=1)FBr()BL A Bu v A Buyr.
k

given by

Remark 3.25. The truncation of Vj(s) is the usual zero locus V(s).

Example 3.26 (Derived zero locus of a vector field). Let X be a smooth scheme and v € Tx|c be
a global vector field. Then the derived algebra of functions of Vy(v) is given by

(/\ QX|(C7 L’U)
where ¢, is the interior product with respect to v from differential geometry.

Definition 3.27 (Derived critical loci). Let X = Spec(R) be a smooth affine scheme over C and
f € Ox(X) a function. Consider df € Q}QC. We call V;(df) the derived critical locus of f.

Example 3.28. For a derived critical loci, the derived algebra of functions on Vy(df) is represented
by a cdga which has as an underlying graded ring A T'x|c the algebra of multivectors from differ-
ential geometry. The differential comes from applying the differential 1-form df to those tangent
multivectors.

Example 3.29. In this example, we compute the cotangent complex of a derived locus. So let R
be a smooth algebra, P a finite projective module, and s € P. Denote as above Sp = Symp(P")
the functions on the vector bundle V(P). The goal is to compute

Ly,(s)lc-
First, as by definition we have a pushout square in dAlg
S, —— R

| |

R —— Kos(P, s)
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So we use Proposition 3.15 to get a fiber sequence of the following form.
(1) Kos(P, s) ®sp Lg,ic — Kos(P,s) ®r Lgic © Kos(P,s) ®r Lgic = Lkos(p,s)|C

Therefore to compute Lkqg(p,s)jc; We need to understand the complexes and the maps Lg,ic —
Lgic induced by the zero section and s respectively. First, because C — R is smooth and so is
R — Sp we have that

Lgic = Qpcl0] Lsyic = Qspcl0]

Also, using the fiber sequence from C — R — Sp one gets a split exact sequence (because these
are projective modules concentrated in degree zero)

0 — Sp®gr Qric = Qspic — s, g = 0
But Qg g = Sp ®r P". Therefore we have
Qspic = Sp @, (PY & Qpc)
Inserting this in Equation (1) we get that the first two terms are
Kos(P,s) @r (P & Qpc) — Kos(P,s) Or (Upic ® Qro)-
Using matrix notation, this map is given by the tensor by Kos(P, s)®p of the R-linear map
PY @ Qpc = Qric ® Uric

0 ds
id id

where ds denotes the map taking ¢ € PV and sending it to d(p(s)).
This complex is quasi-isomorphic to the following one

given by

v o ds
Py = QR\(C-

In the end we conclude that Lk ps)c is the complex

Kos(P,s) @r (P¥ 2 Qpc).

Example 3.30. We specialize the previous example to the case of a derived critical locus. Namely,
take f € Ox(X) where X = Spec(R) is a smooth affine scheme. Considering Kos(Q2gc, df), we get
that Lo ricsdf)[C is obtained by tensoring the complex of finite projective R-modules concentrated
in degree 0 and 1

D2
(2) Tx|c 29, Qx|c

where D?(f) denotes the map sending a tangent vector v to d(df(v)). In other words, étale
locally this map is given by the Hessian of the function f, i.e. the matrix of second derivatives of

f.
Note that the symmetry of the Hessian implies that the map from Equation (2) is self-dual.
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3.5. Derived stacks. In what follows, we will define derived schemes, and derived algebraic stacks.
A prerequisite is the notion of sheaf of co-groupoids/anima.

Definition 3.31. Let C be an oo-category equipped with a structure of site 7.

(1) The oo-category of presheaves of anima on C is Fun(C°P, Ani).

(2) We say that a presheaf F is a sheaf if for every covering (C; — C) then if Cy denote the

Cech nerve of these maps, then
F(C)= lim F(Cy)
neA°pP
The last condition can seem mysterious so we provide an example. Say we are working on the

site of topological space and X = |J; U; is a covering by open sets. Then the Cech nerve is

== U = Uy U

If the sheaf is set valued, then the limit in the definition is equivalent to the usual equalizer. When
it is groupoid valued, it is equivalent to the usual stack condition.

In general it states that a morphism to F(C) is the same as a collection of morphism to F(C;),
together with homotopies that witness that the maps agree on theses intersections, but these
homotopies have to satisfy a compatibility condition on triple intersections (cocycle condition),
a compatibility which is expressed by homotopies, and then these homotopies have to satisfy a
compatibility condition on quadruple intersections, and so on. This is the meaning of the sheaf
condition.

Definition 3.32 (Etale topology). We say that an étale cover is a finite collection of maps (4 — A;)
in dAlg such that each map is étale, and (mg(A) — m(A4;)) is a faithfully flat cover. We consider
the étale topology on dAlg in what follows.

Definition 3.33 (Derived stacks). A derived stack F is a sheaf of anima on dAlg®? for the étale
topology. We denote this co-category dSt. We denote by Spec(A) the sheaf represented by some
A e dAlg.

For any F € dSt we can consider the composition
Alg®® — dAlg®™® 7, Ani.
This defines a sheaf of anima on Alg for the étale topology, that we denote by F.
Example 3.34. If 7 = Spec(A), then F.; = Spec(mo(A)) which is set valued.

Definition 3.35 (Derived scheme and schematic maps). A derived scheme X is a derived stack
such that there is an epimorphism

|_|UZ'—>X

where Uj is affine, and the map U; — X is an open immersion.”

3We say that a map of sheaves F — G is an open immersion if for every map Spec(A) — G, with pullback
Fa — Spec(A), then map Fa,c1 — Spec(A)q is an open immersion of schemes.
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We say that a morphism of derived stacks F — G is schematic if for every map Spec(A) — G
the pullback F4 — Spec(A) is a derived scheme.

Definition 3.36 (Smooth morphisms). A map of derived stacks F — G is smooth if for every map
Spec(A) — G the pullback F4 — Spec(A) is a derived scheme smooth over Spec(A). This means
that F4 can be covered by affine opens such that restriction correspond to smooth maps of derived
algebras.

Definition 3.37 (Derived algebraic stacks). This is an inductive definition. It starts with derived
algebraic spaces then goes to derived 1-stack, derived 2-stacks, etc.

(0) We say that a derived stack X is a derived algebraic spaces or a 0-Artin stack if X — X x X
is a schematic monomorphism and that there exists an étale surjection U — X where U is
a derived scheme. We say that a morphism F — G is 0-Artin if for every map Spec(A) — G
the pullback F4 — Spec(A) is a derived algebraic space.

(1) We say that X is a 1-Artin derived stack if its diagonal is 0-Artin and there exists a smooth
surjection U — X where U is a derived scheme. Same method of definition for a morphism
which is 1-Artin.

(n) (n > 1) We say that X is a n-Artin stack if its diagonal is (n — 1)-Artin and that there
exists a smooth surjecion U — X from a derived scheme. Same method of definition for a
morphism which is n-Artin.
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