
SHEAF COHOMOLOGY FROM HIGHER SHEAVES

LÉO NAVARRO CHAFLOQUE

Abstract. In this short note, we define sheaf cohomology using the higher sheaves perspective
(as presented in [HTT]) and deduce from the formalism that Čech cohomology on an acyclic
cover computes cohomology. In the first section, we define sheaves on a general ∞-category C
equipped with a Grothendieck topology.
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Foreword. Throughout this note, we denote by Ani the ∞-category of anima, which [HTT]
calls spaces. Throughout this text we do not make any reference to a peculiar model1 of higher
category theory: this allows the reader to treat ∞-categories much like ordinary categories,
and the ∞-category Ani as if it were the category of sets whenever this mental simplification is
harmless.

Throughout this note, C denotes a category equivalent to a small ∞-category.

1. Higher sheaves

In this section, we introduce higher sheaves, from [HTT, Section 6.2.2].

1.1. Topologies, Sites and Sheaves of anima. We use sieves and Grothendieck topologies
for categorical convenience and to align with [HTT, Section 6.2.2], which is our main reference
on higher sheaves. We also present the more familiar notion of sites, which is more customary
for algebraic geometers. Namely, readers interested only in sites may focus on Definition 1.9,
use Proposition 1.15 as a definition of sheaves, and ignore the rest of Section 1.1.

Definition 1.1 (Sieve). Let C be an∞-category. A sieve on C can be equivalently seen ([HTT,
Proposition 6.2.2.5]) as follows.

1We however cite proven results (in a peculiar model) from [HTT] and [Ker].
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2 LÉO NAVARRO CHAFLOQUE

(1) A full subcategory C(0) of C satisfying that if X is an object of C(0) and Y → X is a

morphism, then Y ∈ C(0)
(2) A subobject of ∗ ∈ PShAni(C). In other words, this is a functor whose value is either

empty or contractible.

The equivalence between the two notions can be seen as follows: given a subobject U of the
terminal object PShAni(C), one can define a full subcategory CU spanned by all objects X ∈ C
with U(X) ̸= ∅. A sieve on C ∈ C is a sieve on C/C .

Remark 1.2. Sieves on C are in one-to-one correspondence with sieves in Ho(C). See [Ker, Tag
04UH] and [Ker, Tag 01CP]. A sieve on C ∈ C is the same as a sieve on C ∈ Ho(C), i.e. a sieve
on the category Ho(C)/C . This is true even if the natural functor Ho(C/C)→ Ho(C)/C is not an
equivalence in general, see [HTT, Remark 6.2.2.3] and [Ker, Tag 04UH].

Example 1.3. Let C be an ∞-category and (Ci → C)i∈I be a family of morphisms. Then
one can define the sieve generated by the family of morphisms (Ci → C)i∈I as the smallest full
subcategory of C/C containing each Ci → C.

Example 1.4. Let C = Op(X) be the poset of open subsets of a topological space X. Let
(Ui ⊂ X) be a collection of opens such that

⋃
i Ui = X. Let’s consider the sieve on X generated

by (Ui ⊂ X). This sieve consists of open sets V ⊂ X such that there exists some index i with
V ⊂ Ui. Let’s denote the corresponding presheaf by S. In this language we have S(V ) = ∗
if and only if there is some i with the property that V ⊂ Ui and empty otherwise. We jump
forward a bit (see Proposition 1.15) to explain to an algebraic geometer why sieves are just a
categorical polishing of the usual notion of cover. Namely take any presheaf F on Op(X). We
claim that

HomPShSet(Op(X))(S,F)
is a known friend. Namely, one sees that to define a natural transformation S → F one has to
prescribe some section

si : ∗ = S(Ui)→ F(Ui)

the functoriality will impose that for any V ⊂ Ui that we have

sV : ∗ = S(V )→ F(V )

being equal to si|V . In particular, for V = Ui ∩ Uj we see that si|Ui∩Uj
= sj|Ui∩Uj

. Therefore,
one sees that if F is a sheaf on X with the usual definition, then the natural map

F(X) = HomPShSet(Op(X))(hX ,F)→ HomPShSet(Op(X))(S,F)
is an isomorphism – and one can define a sheaf if one imposes that this map is an isomorphism
for all covering sieves.

Example 1.5. Say f : C → D is any morphism. Let C(0)/D be a sieve on D. Then we define the

pullback sieve f∗C(0)/D as the sieve on C consisting of maps X → C such that X → C
f−→ D ∈ C(0)/D.

The following imitates [SGA4-1, Exposé II, Section 1, Définition 1.1].

Definition 1.6 (Grothendieck topology, [HTT, Definition 6.2.2.1]). Let C be an ∞-category.
A Grothendieck topology or simply a topology on C is the data for each C ∈ C of a collection of
sieves that are called covering sieves. These are required to satisfy the following properties.

https://kerodon.net/tag/04UH
https://kerodon.net/tag/04UH
https://kerodon.net/tag/01CP
https://kerodon.net/tag/04UH
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(1) If C ∈ C then C/C is a covering sieve of C.

(2) Local character. Let C(0)/C be a covering sieve and C(1)/C be any sieve on C. If for every

f : D → C in C(0)/C the pullback f∗C(1)/C is a covering sieve on D, then C(1)/C is also a covering

sieve.
(3) Stable under base change. If f : C → D is any morphism and C(0)/D is a covering sieve,

then f∗C(0)/D is also a covering sieve.

Remark 1.7. Grothendieck topologies on the ∞-category C are in one-to-one correspondence
with Grothendieck topologies on Ho(C), because of the facts mentioned in Remark 1.2.

Example 1.8. The chaotic topology is the one in which the only covering sieve on C is C/C for
every object C ∈ C. More interesting examples after Definition 1.9.

Definition 1.9 (Site). Let C be an ∞-category with fiber products. We say that a site or a
pre-topology on C is the data for each C ∈ C of a set Cov(C) of families of morphisms (Ci → C)
with target C which are called coverings such that

(1) If D → C is an isomorphism, then (D → C) ∈ Cov(C).
(2) Local character. If (Ci → C) ∈ Cov(C) and for each i, we have (Cij → Ci) ∈ Cov(Ci),

then (Cij → C) ∈ Cov(C).
(3) Stable under base change. If (Ci → C) ∈ Cov(C) and D → C any morphism, then

(D ×C Ci → D) ∈ Cov(D).

Example 1.10. Let X be a topological space. Let C = Op(X). Then for any open U , an open
cover (Ui → U) defines a structure of site.

Example 1.11. Let R be an animated ring. If one does not know what an animated ring
is, one may simply consider an ordinary ring. We consider the ∞-category ÉtR, the opposite
category of the category of étale algebras R → S. Taking as covers finite collection of maps
(R→ Si) such that R→

∏
i Si is faithfully flat defines a structure of site on ÉtR.

We can consider the smallest Grothendieck topology such that sieves generated by Cov(C) are
covering sieves, as explained in Proposition 1.12. See [SGA4-1, Exposé II, Section 1, Proposition
1.4] for the 1-categorical version and [SAG, A.3.2.1] for an∞-categorical version, which actually
slightly differs from the situation exposed here.

Proposition 1.12. Let C be an ∞-category with fiber products equipped with a structure of
site. Consider for each object C the collection of sieves S′ that contain a sieve S generated by
a covering in Cov(C). Then, this collection of sieves defines a Grothendieck topology on C.

Proof. We want to show properties (1)-(3) of Definition 1.6. Because (1) and (3) from Defini-
tion 1.9 hold, we see that (1) and (3) from Definition 1.6 also hold. Therefore we are left to
show that property (2) holds as well.

So let C ∈ C be an object and C(0)/C be a covering sieve for the topology defined in the statement

and C(1)/C be any other covering sieve having the property that for any f : D → C ∈ C(0)/C the

sieve f∗C(1)/C is a sieve for the topology defined in the statement. By hypothesis, there is some

covering (fi : Ci → C) such that fi : Ci → C is in C(0)/C . That f∗
i C

(1)
/C is a sieve for the topology
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defined in the statement means that there is some (Cij → Ci) which is a cover in this sheaf –

being in the pullback sheaf means that Cij → C is a map in C(1)/C . Using this for every i and

using (2) of Definition 1.9, we see that (Cij → C) is a covering, which concludes. □

Now comes the central definition of Section 1.1.

Definition 1.13 (Sheaves of Anima). Let C be an ∞-category equipped with a Grothendieck
topology. The category ShAni(C) of sheaves of anima on C is defined as the full subcategory
of PShAni(C) = Fun(Cop,Ani) consisting of presheaves F satisfying the following property: for
every object C ∈ C and covering sieve S → hC of C, the canonical map

MapPShAni(C)(hC ,F)→ MapPShAni(C)(S,F)

is an isomorphism in Ani. Another way to phrase this is that if C(0)/C is the subcategory of C/C
corresponding to S, then the natural map

F(C)→ lim←−
(D→C)∈C(0) op

/C

F(D)

is an isomorphism.

Remark 1.14. By construction, ShAni(C) is a localization of PShAni(C) at the morphisms
S → hC for any covering sieve S. As a localization of a presentable ∞-category, the inclusion
ShAni(C) ⊂ PShAni(C) is a right adjoint. The left adjoint is called the sheafification. One can
also show that the left adjoint is exact, essentially because (3) in Definition 1.6 ensures that the
morphisms we invert are stable under pullback. See [HTT, Lemma 6.2.27] for more details.

When the category C admits fiber products and the topology comes from a structure of site,
we have the more familiar description of sheaves.

Proposition 1.15. Let C be an ∞-category with fiber products equipped with a structure of site.
Consider the topology on C associated to the site (see Definition 1.9 and Proposition 1.12). Let
F ∈ PShAni(C) be a presheaf. Then the following conditions are equivalent.

(1) F is a sheaf.
(2) For every object C ∈ C and every covering (Ci → C). Consider

Č•(Ci → C) : ∆op → PShAni(C)
the Čech nerve of

⊔
i hCi → hC in PShAni(C). Then

F(C)→ lim←−
n∈∆
F(Čn(Ci → C))

is an isomorphism in Ani.

Remark 1.16. Let us expand on (2) of Proposition 1.15. Because the category C has fiber
products, let us denote, for i1, . . . , in+1 in the indexing set of the covering,

Ci1···in+1 := Ci1 ×C · · · ×C Cin+1 .

We have by construction of the Čech nerve that

Čn(Ci → C) =
⊔

i1,...,in+1

Ci1...in+1
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and therefore that
F(Čn(Ci → C)) =

∏
i1,...,in+1

F(Ci1...in+1)

To say that F(C)→ lim←−n∈∆F(Čn(Ci → C)) is an isomorphism we write

F(C)
∏

iF(Ci)
∏

ij F(Cij)
∏

ijk F(Cijk) (· · · )

See Example 1.20 for the link with the notion of Set and Groupoid valued sheaves. Note also
that by [Ker, Tag 04RE], which states that ∆inj ⊂ ∆ is left cofinal, one may disregard the
degeneracies in the above diagram. In other words, in characterization (2) in Proposition 1.15,
one can take the limit on ∆inj.

Proof of Proposition 1.15. First, we show the equivalence of (1) with

(2’) For every C, and C(0)/C a sieve generated by a covering of C, we have

F(C)→ lim←−
(D→C)∈C(0) op

/C

F(D)

The only difference from the sheaf condition is that we check it not for all covering sieves
(i.e., sieves containing one generated by a covering) but only for those generated by a covering.
Therefore we see that (1) implies (2’) trivially.

To show the converse, let C(1)/C ⊃ C
(0)
/C be a covering sieve containing a sieve generated by a

covering C(0)/C . By [Ker, Tag 030Y], it suffices to show that

C(1) op/C AniF

is right Kan extended from C(0) opC/ . This would means that for every f : D → C ∈ C(1)/C , we have

(1) F(D) = lim←−
(D′→D)∈f∗C(0) op

/C

F(D′).

But f∗C(0)/C is a covering sieve on D because it is generated by (D ×C Ci → D) which is a

covering by (3) of Definition 1.9 – therefore Equation (1) holds by assumption (2’).
Now, the statement follows from [Ker, Tag 04WM], which states that one can more explicitly

compute limits of sieves using Čech nerves.
□

1.2. Valued sheaves. In this section, we define sheaves with values in an arbitrary∞-category.

Definition 1.17 (Sheaves with values in a category [SAG, Definition 1.3.1.4]). Let D be a
complete ∞-category. The category of D-valued sheaves is the category of limit preserving
functors

ShAni(C)op → D.
We denote this category by ShD(C). Precomposition with the natural map Cop → ShAni(C)2
induces an equivalence of categories with the full sub category of Fun(Cop,D) spanned by those

2Composition of the Yoneda embedding and the sheafification functor.

https://kerodon.net/tag/04RE
https://kerodon.net/tag/030Y
https://kerodon.net/tag/04WM
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functors F with the properties that for every object C ∈ C and covering sieve C(0)/C the natural
map

F(C)→ lim←−
(D→C)∈C(0) op

/C

F(D)

is an equivalence.

Proof of the last claim in Definition 1.17. Because PShAni(C) is the co-completion of C, colimit
preserving functors

PShAni(C)→ Dop

corresponds to functors C → Dop. Thus functors in Definition 1.17 corresponds to functors
from Cop → D. Now, colimit preserving functors PShAni(C) → Dop which factor through
sheafification are exactly those sending natural maps S → hC where S is a covering sieve to an
isomorphism. Concatening this with the above translation yields the claim in the definition. □

We have an analogue of Proposition 1.15, with the same proof working.

Proposition 1.18. Let C be an ∞-category with fiber products equipped with a structure of site.
Consider the topology on C associated to the site (see Definition 1.9 and Proposition 1.12). Let
F ∈ Fun(Cop,D) be a functor. Then the following conditions are equivalent.

(1) F is a D-valued sheaf.
(2) For every object C ∈ C and every covering (Ci → C). Consider

Č•(Ci → C) : ∆op → PShAni(C)

the Čech nerve of
⊔

i hCi → hC in PShAni(C). Then

F(C)→ lim←−
n∈∆
F(Čn(Ci → C))

is an isomorphism in D.

Remark 1.19. As in Remark 1.16, it may be more meaningful to write the condition as

F(C)
∏

iF(Ci)
∏

ij F(Cij)
∏

ijk F(Cijk) (· · · )

Example 1.20. We take several examples of categories D. This for example shows that the
higher sheaf theory recovers the usual theory of sheaves and stacks.

(1) D = Set . In this case, using Proposition 1.18, ShSet(C) corresponds to presheaves Cop →
Set, satisfying condition (2). This corresponds therefore to functors Ho(C)op → Set
satisfying property (2). But using [Ker, Tag 04RM], we see that this limit actually
reduces to the usual sheaf condition

F(C)
∏

iF(Ci)
∏

ij F(Cij)

meaning that the first arrow is the equalizer of the diagram. Therefore, Set-valued
sheaves as defined in Definition 1.17 really correspond to the usual notion of sheaf.

(2) D = Ab . Because Ab is a 1-category, the above arguments also hold.

https://kerodon.net/tag/04RM
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(3) D = Grpd . In this case, the sheaf condition will translate to

F(C)
∏

iF(Ci)
∏

ij F(Cij)
∏

ijk F(Cijk)

meaning that the first arrow exhibits F(C) as the limit of the rest of the diagram in the
2-category of groupoids. This is the usual “stack condition”. The category ShGrpd(C) is
equivalent to the usual category of stacks on C, as in [Sta, Tag 0266].

(4) D being a n-category. We provide a more conceptual explanation for the behavior
showed above. One can show, using a variation on Quillen’s theorem A (replace the
category which has to be weakly contractible by weakly n-contractible) [Ker, Tag 02NX]
that ∆≤n ⊂ ∆ is n-left cofinal. This means that limits with values in n-categories does
not change when precomposing with the inclusion ∆≤n ⊂ ∆. Therefore, the sheaf
condition for sheaves with values in n-categories can be written as a limit involving only
(n+ 1)-“intersections”.

(5) D = D(Z). In this case, the theory exposed here provides the correct notion of “sheaves
of complexes”. For example, for a topological space X, with C = Op(X) the association
of an open to its singular cohomology (seen as a derived object)

U → C•
sing(U,Z)

defines a D(Z)-valued sheaf. The sheaf condition from Proposition 1.18 for a cover by
two opens is verified because of the usual Mayer-Vietoris theorem (it’s equivalent to it).

2. Sheaf cohomology

Let C be an∞-category with a Grothendieck topology and F ∈ ShAb(C) be an abelian sheaf.
By the inclusion Ab ⊂ D(Z) one can see F as an object of PShD(Z)(C). Note, however, that
Ab ⊂ D(Z) does not preserve limits; therefore, in general if F ∈ ShAb(C) the composition

F : Cop → Ab→ D(Z)
is not a D(Z)-valued sheaf as in Definition 1.17.

We take the following notations.

(1) We denote by
c∗ : PShD(Z)(C)→ ShD(Z)(C)

the D(Z)-sheafification, i.e. the left adjoint to the inclusion

ShD(Z)(C) ⊂ PShD(Z)(C).
(2) We denote by

p∗ : ShD(Z)(C)→ D(Z)
the global sections functor, right adjoint to the constant functor p∗ : D(Z)→ ShD(Z)(C).

2.1. Sheaf cohomology. We can now take the following definition of sheaf cohomology of an
abelian sheaf.

Definition 2.1 (Sheaf cohomology). Let C ∈ C be an object. We define

RΓ(C,F) = (c∗F)(C) ∈ D(Z).
the sheaf cohomology of F on C. The absolute sheaf cohomology is defined to be

RΓ(C,F) = p∗c
∗F ∈ D(Z).

https://stacks.math.columbia.edu/tag/0266
https://kerodon.net/tag/02NX
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For i ∈ Z, we define i-th cohomology groups as

Hi(C,F) := π−i(RΓ(C,F)) Hi(C,F) := π−i(RΓ(C,F)).
Remark 2.2. The absolute sheaf cohomology is the cohomology at a terminal object of C if C
has one.

Proposition 2.3 (Coconnectivity). We have

RΓ(C,F) ∈ D≤0(Z),
so that the sheaf cohomology of an abelian sheaf is coconnective, i.e. that Hi(C,F) = 0 if i < 0.
The same holds for RΓ(C,F).

Proof. One can first perform an analogous definition with D(Z)≤0. Namely, denote by

c∗≤0 : PShD(Z)≤0
(C)→ ShD(Z)≤0

(C)

the left adjoint to the inclusion.3

The important point is that D(Z)≤0 ⊂ D(Z) is limit preserving. Therefore for F ∈ ShAb(C)
the composition

c∗≤0F : ShAni(C)op → D(Z)≤0 → D(Z)
is already limit preserving, i.e. a sheaf and therefore insensitive to further sheafification.

The same holds for RΓ(C,F) because we always have

RΓ(C,F) = lim←−
C∈C

RΓ(C,F),

as we will explain in the proof of Proposition 2.11. Now the claim follows again because D≤0(Z)
is stable under limits in D(Z). □

Definition 2.4 (Acyclic). We say that an abelian sheaf F is acyclic at C ∈ C if

πi(RΓ(C,F)) = 0

for i ̸= 0. Equivalently, the unit map
F → c∗c

∗F
is an isomorphism.

2.2. Čech cohomology. We now recover one of the most important ways to compute sheaf
cohomology.

Definition 2.5 (Čech complex). Let C be an ∞-category with fiber products equipped with a
structure of site. Let F be an abelian sheaf. Let (Ci → C) be a covering. We define the Čech
complex of F at the covering (Ci → C) by

Cn
Č
((Ci → C),F) =

∏
i0,...,in

F(Ci0···in)

with differential d : Cn
Č
((Ci → C),F)→ Cn+1

Č
((Ci → C),F) given by

d(s)i0···in+1 =
n+1∑
j=0

(−1)jsi0···îj ···in+1|Ci0···in+1
.

3The inclusion Ab ⊂ D(Z)≤0 is not limit preserving (but colimit preserving), so this adjunction produces a
not trivial result.
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Denote this complex by C•
Č
((Ci → C),F).

Remark 2.6. A more convenient complex to work with which is quasi-isomorphic to the one
from Definition 2.5 is the ordered Čech complex, see [Sta, Tag 01FG].

Theorem 2.7 (Čech cohomology). Let (Ci → C) be a covering such that for every integer n
and indices i0, . . . , in the sheaf F is acyclic at Ci0...in. Then, there is canonical isomorphism

RΓ(C,F)→ C•
Č
((Ci → C),F).

Proof. Because c∗(F) is a sheaf, using Proposition 1.18 and Definition 2.1 we get that the
natural map

(2) RΓ(C,F)→ lim←−
n∈∆

RΓ(Ci0···in ,F),

is an isomorphism. Now, using the acyclicity hypothesis, we get

RΓ(C,F)→ lim←−
n∈∆
F(Ci0···in).

Now, as this limit in D(Z) can be realized as the total complex associated to the cosimplicial
object ∆op → Ab ⊂ Ch(Z) given by n 7→ F(Ci0···in) and induced restriction maps for the
functoriality. A detailed reference on the matter is [Ara25, Section 2]. This total complex
as the peculiar feature of being formed for a cosimplicial chain whose elements are discrete
chains. Inspecting, one sees that this total complex can be identified to the Čech complex of
Definition 2.5. □

Remark 2.8. The formula from Equation (2), together with the fact that limits on ∆ are
computed by totalization ([Ara25, Section 2]) gives a general recipe to compute cohomology.

Example 2.9. Let M be a manifold and (Ui ⊂ M) be a good cover in the sense that any
intersections of the Ui are contractible. Then sheaf cohomology in the constant sheaf Z (i.e.
singular cohomology) is computed by the Čech complex∏

i Z
∏

ij Z
∏

ijk Z (· · · )

Example 2.10. Let X be a separated scheme. Let F be a quasi-coherent sheaf on X. As the
site Op(X) is equivalent to the site open affines of X and that F is acyclic at every open affine,
we get that the Čech complex on an affine cover computes cohomology, as in [Sta, Tag 01XD].

2.3. Acyclic sites and chaotic topology.

Proposition 2.11 (Chaotic topology comparison). Let F ∈ ShAb(C) be an abelian group valued
sheaf. Suppose that for every object C ∈ C

Hi(C,F) = 0

for every i ∈ Z, meaning that every object of the site is acyclic. Then,

RΓ(C,F) = lim←−
C∈C
F(C)

in D(Z). The right hand side is the cohomology with respect to the chaotic topology on C.

https://stacks.math.columbia.edu/tag/01FG
https://stacks.math.columbia.edu/tag/01XD
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Proof. Consider the following square of right adjoints commuting up to natural isomorphism.

ShD(Z)(C) PShD(Z)(C)

D(Z)
p∗

c∗

lim←−

Therefore, it always holds that

RΓ(C,F) = p∗c
∗F = lim←−

C∈C
RΓ(C,F).

But the acyclicity hypothesis implies that the natural map of presheaves F → c∗c
∗F is an

isomorphism, and therefore
RΓ(C,F) = lim←−

C∈C
F(C)

□

As an immediate corollary we get the following.

Corollary 2.12. Let F be an abelian sheaf for some topology τ on C. Suppose that we are in
the situation of Proposition 2.11 and that F is acyclic at every object of C. Then cohomology
of F taken in any topology which is coarser than τ does not change.

Example 2.13. Let R be a p-complete ring and AffPfdR be the opposite of the category of
perfectoid R-algebras (cutted of by some strong limit cardinal as in [BM20, Remark 4.18]).
Equip AffPfdR with the p-complete arc-topology [CS23, Section 2.2.1]. Then any perfectoid
ring is acyclic [BS22, Proposition 8.10] for the structure sheaf

O : S 7→ S.

Therefore the cohomology of R in the arc-topology is equal to

lim←−
R→S

S

where R → S ranges over maps to perfectoid rings and the limit is computed in D(Z) (or in
E∞-R-algebras). In particular if this limit is discrete, it is an initial perfectoid R-algebra.
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